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Abstract

In this article, we address the problem of portfolio replication raised by researchers
in finance. We develop a new machine learning algorithm L1 Regularized Rolling
Regression and also make inference on trading strategies based on the daily re-
turn and cumulative return space. We also incorporate hierarchical modeling and
hidden Markov model to refine our results. Synthetic portfolio are constructed to
simulate the performance of this parametric learning method. Real data analysis
are shown to prove its capability of handling complex and low frequency data.
This new method could also be generalized to unwind other problems of similar
kind.
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Chapter 1
Introduction

1.1 Problem Description

In this paper, we consider the problem of tracking the holdings of a particular port-

folio. There is a secret portfolio which reports its returns daily. We do not know

either which instruments the portfolio contains or what weight each instrument

has. However, we do know the vast investments vehicles available in the markets,

such as bonds and stocks. To make it more intuitive, we can imagine the problem

like this. There is a black box which processes some information and reveals a

certain piece of information at the end. The input of the black box is, for example,

the returns of a large variety of investment instruments; the output of the black

box is one series of returns generated by a hidden hand in the box. Now, we want

to crack this black box and see what the hidden hand looks like. This problem is

also called the inverse problem: extracting information about latent variables or

functions and structural parameters from observed information.

1.2 Motivation

In order to solve this problem, people have developed many methods under different

assumptions to make inferences of the latent variable or parameters. One very

practical method is called portfolio replication. By replication, people can expect

to obtain the same or almost the same return series with only a small subset of
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investment vehicles instead of a wide range of them. Hence, many are motivated

to replicate the performance of a particular portfolio and currently using those

replication models from academia. On one hand, we can expose to the same sources

of risk and return while avoiding high fees and liquidity restrictions, typically

imposed by the investment vehicles; on the other hand, we may wish to hedge the

risk of a significant downturn in the fund or fund of funds that has been already

invested. As we cannot know the portfolio’s holdings, we are forced to estimate

them statistically.

1.3 Two Questions

As we think deeper, there are two main questions that we face:

1. How can we locate and weight the instruments?

2. How can we detect the strategy changes?

We address these questions on the next chapter. The remainder of this article

is organized as follows. Our methodology is elaborated in Chapter 2. Our new

and exciting simulation results about weight tracking and strategy inference are

described in Chapter 3. To demonstrate the efficiency, the application on a real

data set is presented in Chapter 4. Finally, the conclusion is made in Chapter 5.



Chapter 2
Methodology

2.1 Two Answers

For the first question we raised in Chapter 1, most practical methods for portfolio

replication available today make use of a rolling regression against fewer than ten

factors that are selected manually in advance. Instead, we investigated the use

of L1 Regularized Rolling Regression to choose regressors from a large universe of

investment vehicles and estimate those sparse coefficients simultaneously.

For the second problem, there are actually infinitely many strategies that are

possibly adopted by different investors. In order to frame these strategies into

one parametric space, we simplify them into two essential types of strategies that

practitioners most often use.

2.1.1 The buy-and-hold strategy

Given the total initial portfolio value of V dollars and initial weight vector β, this

strategy buys V βi of asset i at price Si and simply holds the assets for a certain

duration. A good replication method for the buy-and-hold portfolio should quickly

converge to the true weights β in terms of the number of shares V βi

Si
initially bought

of each asset and perform minimal or no further trades once the true portfolio is

found. The weights in terms of the value of each asset that one holds will change

over time.
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2.1.2 The fixed-constantly-rebalanced strategy

Given the initial weight vector β, this strategy rebalances every period to hold

asset i in proportion to βi of the total value, selling and buying as necessary. A

good replication method for the fixed-constantly-rebalanced strategy will try to

find β and thereby match the rebalancing trades of the true strategy each period.

These two strategies provide good toy models with which to develop our estimation

procedures and extend well to strategies which are more realistic.

2.2 L1 Regularized Rolling Regression

This section provides a detailed elaboration of the first question that we mentioned

previously. In order to unwind the hidden process, we develop a statistical learn-

ing method called L1 Regularized Rolling Regression. By saying L1 regularized

regression, we adopt LASSO method to find the sparse coefficient estimates. By

saying rolling, we use a rolling window with respect to time to find the coefficient

estimates in a certain period.

In other words, our algorithm adopts a rolling lasso estimator on the residuals to

select which portfolio weights to consider updating. To start, at each rolling win-

dow of time periods, we regress the residuals of the portfolio returns on the vast

selection of investment vehicles by LASSO estimator via LARS algorithm; Then,

we roll the window by one time point, calculate the new residuals and do the same

regression that we did in the first step by using the updated residuals; later, we

add the remaining coefficient estimates by L1 regularized regression on residuals

back to the previous coefficient estimates.

Since the LASSO estimator is biased, we then use an unconstrained regression on

the selected instruments to fix the final weight updates. For simplicity, we would

like to have long only portfolios. Hence, all coefficients are constrained to be pos-

itive.

To illustrate a mathematical interpretation of our method, we have the following

formulations.

Let us say we start our algorithm at time t. We denote Yt as the portfolio return

vector starting at time t and ending at time t plus the rolling window length, Xt
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as the return matrix of a large group of investment instruments within the same

period of Yt and βt as the true weight vector at time t.

Yt = Xtβt

We then perform LASSO regression of Yt on Xt and obtain the LASSO estimator

β̂Lasso
t .

Ŷ Lasso
t = Xtβ̂

Lasso
t

To eliminate bias, we perform another regression by ordinary least squares based

on the sparsity obtained in β̂Lasso
t .

Ŷt = Xtβ̂t

Next, we move the rolling window by one time step, calculate the residuals and

use them to obtain the coefficient estimate updates.

ǫ̂t+1 = Ŷt+1 −Xt+1β̂t (2.1)

ǫ̂Lassot+1 = Xt+1β̂
∗,Lasso
t+1 (2.2)

We perform another regression by ordinary least squares as before to get unbiased

coefficient estimates.

ǫ̂t+1 = Xt+1β̂
∗

t+1

Now, we add the coefficient update back to the previous one and make it our new

coefficient estimates.

β̂t+1 = β̂t + β̂∗

t+1 (2.3)

If we put all formulas together we can see that it gives us the desired coefficient

estimates.

ǫ̂t+1 = Xt+1β̂
∗

t+1

Ŷt+1 −Xt+1β̂t = Xt+1β̂
∗

t+1

Ŷt+1 = Xt+1(β̂t + β̂∗

t+1) (2.4)
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Our detailed algorithm of L1 Regularized Rolling Regression is as follows.

Input: Return series of investible assets (Xt) and benchmark asset (bt = Xt,iβ̂t,i).

A rolling window w, relative sparsity parameter α and unconstrained regression

inclusion threshold ǫ.

Output: Vector of portfolio weights βt, with respect to either initial value (the buy-

and-hold strategy) or current value (the fixed-constantly-rebalanced strategy), at

each time point after the initial window w.

Initial value: Parameter vector βt−1 = 0

For each time t:

1. Compute residuals et−w,··· ,t = Xt−w,··· ,tβt−1−bt−w,··· ,t, where Xt−w,··· ,t is the w×p

matrix of returns on the p investible assets during w periods in the rolling window;

2. Let ξ be the L1 Regularized coefficients of et−w,··· ,t regressed on Xt−w,··· ,t with

sparsity parameter α;

3. Set γ = βt−1 + ξ;

4. Clip all elements of γ < 0 to 0;

5. Let I = {i ∈ {1, · · · , p}|γi > ǫ}, the set of assets appearing with nonzero coef-

ficients in γ;

6. Let η be the coefficients of the unconstrained regression of et−w,··· ,t onX(t−w,··· ,t),I ,

the assets in I;

7. Set βt = βt−1 + η.

Since people buy and sell assets at different time points of a day and there are

always transaction fees occurred in the real world, we may add a certain amount

of noises to the return series in order to make simulations more realistic later on.

However, we assume that the aggregations are noise-free at the current stage.

2.3 Strategy Determination

This section addresses the second question that we asked in the previous Chapter.

We intend to determine what strategy an investor adopts as the window rolls.

We assume that there are two fundamental strategies that an investor uses: the

buy-and-hold strategy and the fixed-constantly-rebalanced strategy. For the sake

of strategy inference, we attempt to understand the key properties of the two

strategies.



7

For the buy-and-hold strategy, the percentages of initial value weight or shares of

different assets remain unchanged. Thus, we consider the cumulative return,

Rt =
St

S0
− 1, where St is the asset price at time t,

as an analogy to price. The βR estimates should be the initial weight vector of

values of different assets in the portfolio.

To make it mathematically sound, we provide equations for validation in the fol-

lowing. We first define several terms that we are going to use.

βR
i = Inital weight of values allocated to asset i at time 0, equivalently weight of shares

XR
t,i =

St,i

S0,i
− 1 = Cumulative returns of asset i at time t

Vt = Total value of the portfolio at time t

Y R
t = Cumulative returns of the portfolio at time t

Second, we decompose the cumulative return of the portfolio by the initial value

weight and the individual cumulative returns of all investment vehicles.

Y R
t =

Vt

V0

− 1

=

∑p

i=1
βR
i
V0

S0,i
St,i

V0
− 1

=

p∑

i=1

βR
i (X

R
t,i + 1)− 1

=

p∑

i=1

βR
i X

R
t,i (2.5)

Hence, regressing Y R on XR
i can obtain the initial value weight, or equivalently to

say, the weight of shares in the buy-and-hold strategy.

For the fixed-constantly-rebalanced strategy, the percentages of values of different

assets remain unchanged. Hence, we use daily return,

rt =
St

St−1
− 1, where St is the asset price at time t,
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to make inference. The βr estimated is the weight with respect to the changing

total value of the portfolio.

Likewise, we provide equations to validate the above claim. First, new terms are

defined in the following.

βr
i = Weight of values allocated to asset i at time t

Xr
t,i =

St,i

S0,i
− 1 = Daily returns of asset i at time t

Vt = Total value of the portfolio at time t

Y r
t = Daily returns of the portfolio at time t

Second, we decompose the daily return of the portfolio by the current value weight

and all the individual daily returns of investment vehicles.

Y r
t =

Vt

Vt−1
− 1

=

∑p

i=1
βr
i Vt−1

St−1,i
St,i

Vt−1
− 1

=

p∑

i=1

βr
i (X

r
t,i + 1)− 1

=

p∑

i=1

βr
iX

r
t,i (2.6)

Hence, regressing Yr on Xr
i can obtain the current value weight in the fixed-

constantly-rebalanced strategy.

When the rolling window is in the buy-and-hold region, the initial value weight

βR estimated by cumulative returns should be constant and hence the prediction

errors will be small; meanwhile, the current value weight βr estimated by daily

returns should fluctuate and hence the prediction errors will be large.

When the rolling window is in the fixed-constantly-rebalanced region, the current

value weight βr estimated by daily returns should be constant and hence the pre-

diction errors will be small; meanwhile, the initial value weight βR estimated by

cumulative returns should fluctuate and hence the prediction errors will be large.
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2.4 Measures of Analysis

In order to determine which strategy the investor adopts, we consider several mea-

sures to analyze the estimation results.

2.4.1 Measure 1: Compare βR and βr

This is a simple and intuitive way. We observe whether the initial value weight βR

or the value weight βr remains constant while the other varies. If βR is relatively

unchanged and βr varies much, we claim that the investor is doing buy-and-hold;

if it is the other way around, we claim that the investor is doing fixed-constantly-

rebalanced.

2.4.2 Measure 2: Compare Errors

The span of XR forms the cumulative return space; the span of Xr forms the daily

return space. When the rolling window enters different regions, the two sets of

errors generated by βR and βr in the two spaces should differ significantly. First,

we can examine the error curves to determine region switching. Second, we propose

to take the ratio of the absolute value of prediction errors in the daily return space

versus prediction errors in the cumulative return space. In this case, it is foreseeable

that the error ratio will be significantly large in the buy-and-hold region while it

will be very small in the fixed-constantly-rebalanced region. However, the two sets

of errors are in different spaces and may have a scaling problem. Therefore, we

can transform βR to βc,r, compute errors in the daily return space and then take

the ratio. We can validate the transformation via the following formula.

γR
t,i = Weight of shares of asset i at time t

β̂
c,r
t−1,i =

Vt,i∑p

i=1 Vt,i

=

St,iγt−1,i∑p

i=1
Vt−1,i∑p

i=1
St,iγt−1,i∑p

i=1
Vt−1,i

=

St,i

St−1,i

Vt−1,i∑p

i=1
Vt−1,i∑p

i=1
St,i

St−1,i

Vt−1,i∑p

i=1
Vt−1,i
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=
(Xr

t,i + 1)β̂R
t−1,i∑p

i=1(X
r
t,i + 1)β̂R

t−1,i

(2.7)

2.4.3 Measure 3: Compare Regions

Since we have both estimators in the same space after transformation, we can

also form a weighted LASSO estimator βw to combine the two LASSO estimators.

This can lead to a simplified model. For the sake of region determination, we

can perform a hierarchical regression based on the two sets of daily returns of the

portfolio. In different regions, only one set of daily returns of the portfolio can be

very close to the true daily returns of the portfolio. Thus, the two regression curves

should differ from each other significantly. We can also employ hidden Markov

model to differentiate the regions, a common approach, especially in Bayesian

analysis, to form regime switch models. This type of model enables us to make

inference on the change of levels.



Chapter 3
Simulation

3.1 Setup and Parameters

To simulate and examine the performance of the method, we perform a synthetic

portfolio replication. Our goal is to replicate a synthetic portfolio of five equally

weighted assets drawn from S&P 500. The synthetic portfolio returns are regressed

against all the S&P 500 assets from June 1, 2005 to November 31, 2008. In total,

there are 881 daily returns and cumulative returns, respectively, for the 500 stocks

except those that do not have full time history. We construct the synthetic portfolio

to be fixed-constantly-rebalanced for most periods of time but to be buy-and-hold

from Day 201 to 300. The larger the rolling window is, the larger the number of

data points we have in each regression process. Hence, β’s are smoother and false

positives are fewer. However, a larger window also results in slower convergence

and because time is valuable, slower convergence is detrimental to performance.

Hence, it is necessary to select a well-balanced rolling window.

We make the following definition.

Xr = N × p matrix of daily returns with row as time and column as each asset

XR = N × p matrix of cumulative returns with row as time and column as each asset

Y r = N × 1 vector of daily returns of the synthetic portfolio

Y R = N × 1 vector of cumulative returns of the synthetic portfolio
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In our case, N is 881 and p is 500 minus the number of stocks which have missing

records during the whole time period.

In the fixed-constantly-rebalanced region, we set the current value weight βr
i =

0.2, i = 1, · · · , 5; in the buy-and-hold region, we set the initial value weight

βR
i = 0.2, i = 1, · · · , 5.

Empirically, the rolling window is set at w = 30.

The relative sparsity parameter is set at α = 0.05. From machine learning point

of view, the relative sparsity parameter specifies the learning rate. If it is large, we

obtain less sparsity and the learning process may be boosted or overly adjusted;

if it is small, we obtain more sparsity and the learning process may be too slow.

It is often debatable to use which learning rate but empirically we would like it

to be fairly small, for instance, no more than 0.05, given that we have enough

computational power.

The unconstrained regression inclusion threshold is set at ǫ = 10−6. Without loss

of generality, we consider long-only portfolios in this simulation.

3.2 Compare Betas

We can plot βr and βR in the daily return graph and cumulative return graph,

respectively.
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Figure 3.1. Rebalanced Weight βr
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Figure 3.2. Initial Weight βR

From the above graphs, we can observe that L1 Regularized Rolling Regression

reveals the initial value and current weights respectively when the rolling window
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is completely in each region, regardless of the adjustment time needed to achieve

the stable weights. Based on the weight estimates, when the rolling window starts

to enter the buy-and-hold region at time 171, βr begins to fluctuate; when the

rolling window enters the buy-and-hold region fully at time 200, βR becomes stable

as constant while βr keeps fluctuating; when the rolling window starts to return to

the fixed-constantly-rebalanced region at time 271, βR begins to fluctuate; when

the rolling window returns to the fixed-constantly-rebalanced region fully at time

301, βr becomes constant again while βR keeps fluctuating. We can use these

phenomena directly to determine which strategy the investor uses and when he or

she makes the change.

3.3 Compare Errors

For starters, we can examine the error graphs of βr and βR.
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Figure 3.3. Errorβr
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Figure 3.4. ErrorβR

From the error graphs, we can also see that L1 Regularized Rolling Regression

determines two different regions. When the investor uses the fixed-constantly-

rebalanced strategy, the errors with respect to βr are small while the errors with

respect to βR are large.

For the scale of errors corresponding to βr, when the rolling window starts to enter

the buy-and-hold region at time 171 or leave at time 271, the magnitude of errors

changes from 10−36 to 10−9; when the rolling window completely returns to the

rebalanced region at time 301, the magnitude of errors changes from 10−7 to 10−36.



14

For errors corresponding to βR, when the rolling window starts to return to the

fixed-constantly-rebalanced region at time 271, the magnitude of errors changes

from 10−29 to 10−7 and then immediately to 10−3. Similarly, we can also use these

phenomena to determine the region switch.

Let us examine the error graphs of βr and βc,r.
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Figure 3.5. Errorβr
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Figure 3.6. Errorβc,r

The error and converted error graphs above gives us another perspective about the

regime switch phenomena.

Second, we would like to see the error ratios with respect to βr and βc,r. We use

converted errors of βc,r to compute the ratios. Notice that the converted errors

produced by βc,r is off 1 index.
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Figure 3.7. Errorβr On Errorβc,r
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Figure 3.8. Errorβc,r On Errorβr

To make the error ratios clearer, we can take the logarithm of the ratios.

From the error ratio graphs, we can observe that there are two different regions
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Figure 3.9. Log ErrorβrOn Errorβc,r
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Figure 3.10. Log Errorβc,rOn Errorβr

similar to error graphs only in a finer fashion.

For converted errors ratio of daily return versus cumulative return, when the rolling

window starts to enter the buy-and-hold region at time 171, the magnitude changes

from 10−32 to 10−5. In addition, when the rolling window starts to return to the

fixed-constantly-rebalanced region at time 271, the magnitude changes from 1021

to 10−1.

According to the fine difference of error ratios magnitude, we can make almost ac-

curate inference about when region switch happens. In general, Figure 4.7 and 3.9

tells us when to stop constantly-rebalanced strategy and start using buy-and-hold;

Figure 3.8 and 3.10 tells us when to stop buy-and-hold strategy and start using

constantly-rebalanced.

3.4 Compare Regions

First of all, we would like to construct a combined LASSO estimator. To combine

βr and βc,r, we propose a weighted LASSO estimator with a rolling window.

βw
t =

wr
t

wr
t + w

c,r
t

βr +
w

c,r
t

wr
t + w

c,r
t

β
c,r
t (3.1)

where

β
c,r
t−1,i =

(Xr
t,i + 1)β̂R

t−1,i∑p

i=1(X
r
t,i + 1)β̂R

t−1,i
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wr
t =

t+w∏

i=t

exp(−Standardized Errorri ) (3.2)

w
c,r
t =

t+w∏

i=t

exp(−Standardized Converted Errorc,ri ). (3.3)

The graphs of weights are showed below. We can check and see that they are

reasonable. Hence,
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Figure 3.11. Weight of βr
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Figure 3.12. Weight of βc,r

We can check and see that the weights are reasonable. Hence, the weighted LASSO

estimator can be formed.
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Figure 3.13. Combined Estimator βw
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Figure 3.14. Errorβw

The weighted LASSO estimator gives us another way of evaluating region switch.

We can use either the different weights of βr and βc,r or the errors of βw to deter-

mine when the change happens and which strategy the investor uses.
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Second, instead of estimating errors and combining estimators, we can simply ap-

ply the idea of hierarchical modeling. First, we obtain estimates of daily returns

based on both estimators βr and βc,r; then, we regress the true daily returns on

the two sets of estimates with a rolling window. The following are the relevant

mathematical formulas.

Y r
t−w = ewr

t−wŶ
r
t−w···t + ew

c,r
t−wŶ

c,r
t−w,··· ,t (3.4)

where

Ŷ r
t = Xr

t β̂
r
t

Ŷ
c,r
t = Xr,tβ̂

c,r
t−1

ewr
t−w and ew

c,r
t−w are the coefficients of weights of the constantly-rebalanced strat-

egy and buy-and-hold strategy, respectively. ewr
t−w is in red and ew

c,r
t−w is in black

in the following graph.
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Figure 3.15. Hierarchical Regression Weight

From the hierarchical model, we can review the regions easily by looking at the

coefficients estimation. Whichever coefficient is closer to 1 determines the strategy

that is being used.

Last, we would also like to use hidden Markov model to determine the region since
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it is a standard approach to such problems. There are two steps in applying hidden

Markov model. We first use EM algorithm to maximize log likelihood and then

use Viterbi algorithm to determine regions. Take the fixed-constantly-rebalanced

errors for example.
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Figure 3.16. Viterbi Determined Region

We notice that hidden Markov model generates a very clean result of region switch,

which works in our favor. It could be recommended to incorporate this kind of

model to form a two-step modeling approach in order to determine region switch.

It may also be considered to perform the two steps iteratively to obtain an equi-

librium of the region switch model. More work needs to be done.



Chapter 4
Application

4.1 Data Description

In this chapter, we analyze the Venture Capital Research Index data from Thomson

Reuters as an example of our application. The Thomson Reuters Venture Capital

(Research) Index (In short, VC Index) tracks the monthly return of the venture

capital universe and determine different industry sector weightings, which are then

applied to investments in specific sector ETFs. The Thomson Reuters Standard

Private Equity Data Feed (hereafter referred to as PE) defines the universe of

companies and round events. Additional data are provided by Thomson One.

In our terminology, we define VC Index as our portfolio and the universe of PE

as our universe of assets. Hence, the daily returns and cumulative returns can be

defined as in Chapter 3. In this case, N is 213 and p is 417. The companies which

have missing records during the whole time period are excluded from the universe.

Without loss of economical sense and generality, we impose some constraints and

assumptions. Since the investor wants diversification, we impose a cap of 0.2 for

each asset. Since the investor concerns about the cost of short-selling, we still

consider the long-only portfolio for replication.
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4.2 Results

Because we only have monthly returns which is of low frequency, and few data

points are available, we do not expect the well-behaved sparsity and stableness as

in our simulation. However, this should not affect the usefulness of our result since

hedge funds or ETFs rebalance their portfolio at least monthly. After tuning the

parameters carefully, we have the following results.

First of all, we would like to look at the errors of fixed-constantly-rebalanced

strategy and the converted errors of buy-and-hold strategy. To obtain better visu-

alization, the smoothed errors are defined.

Errors =
1

w
(

t∑

i=t−w

(Y r
i −Xr

i β̂
r
t−w)

2)
1

2
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Figure 4.1. Errorβr
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Figure 4.2. Errorβc,r

From the graph, we would consider that from time 40 to 75, the investor should do

a buy-and-hold strategy while using fixed-constantly-rebalanced strategy for the

other period of time. Notice that both buy-and-hold strategy and fixed-constantly-

rebalanced strategy give us small errors in some region. Thus, they are equivalent

in some sense, regardless of off one index errors. This is because the initial value

weights are changing every time when the window rolls. The initial value weights

obtained in cumulative return space renew its initial time every time. It is in fact

a rebalanced strategy as well.

Second, we want to plot the error ratios to see the switch.
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Figure 4.3. Errorβr On Errorβc,r
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Figure 4.4. Errorβc,r On Errorβr

We obtain similar results as in the previous graphs but only clearer for the switch

area. Time 40 to 75 should be considered as the buy-and-hold region.

Third, we can construct the weighted LASSO estimator and determine the region

switch by the two sets of weights of the newly combined estimator.
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Figure 4.5. Weight of βr
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Figure 4.6. Weight of βc,r

The weights with respect to each LASSO estimator show us which strategy to use

in different time periods explicitly. For simplicity, we may employ the weighted

LASSO estimator as our final stock picker.

Forth, we can use hidden Markov model approach as demonstrated in our simula-

tion.
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Figure 4.7. Viterbi Determined Region

The Viterbi algorithm provides us a good result of the region switch. We can use

this result as our final strategy picker.



Chapter 5
Conclusion

5.1 Summary

In this thesis, we propose a new machine learning method of portfolio replication,

L1 Regularized Rolling Regression and make inference on the parametric trading

strategies via two different return spaces. We demonstrate its efficiency through

several different measures. In the simulation, L1 Regularized Rolling Regression

shows its fast computation and accurate properties undoubtedly and the strategy

inference proves its good performance. In the real data analysis, although we do

not obtain great sparsity and stableness, we can still make a lot of sense out of this

new machine learning method. By incorporating other methods such as Hidden

Markov Chain which are applied often in machine learning, we can have even

better results of region switch. Overall, it is a good attempt to meet the frontier

of machine learning and finance research.

5.2 Future Work

To begin with, instead of considering the time series regression methods by fre-

quentist inference, we can also tackle the problem by Bayesian inference. After

digging up the literatures, we can find that linear dynamic systems may be a good

candidate. However, although it can estimate the distribution of each coefficient

dynamically, it cannot obtain sparsity with the current techniques. Hence, we
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consider incorporating Bayesian Lasso into Dynamic Linear Models. The difficulty

of this problem is that the Kalman Filtered mean is not easy to generalize since

Bayesian Lasso requires a Laplace prior for coefficients. We are still trying to figure

out.

Up to this point, we have only considered the parametric methods for portfolio

replication. How about the nonparametric ones? We search again and have some

interesting findings in image processing. Image data essentially resemble financial

data. They are both high dimensional and massive. They both want to extract

features, in our case, trading strategies. Hence, we are thinking that those non-

parametric methods may be transplanted on our problem. There are two popular

candidates in the image processing community: restricted Boltzmann machine and

recurrent neural network. We are still looking into the details and hopefully some

work will be done soon.
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